
Kaspersky Security System (KSS) is a security framework that enhances an existing
operational environment with access control features.

KSS can be run on top of a system implementing separation kernel (SK) architecture.
KasperskyOS is an example of such a system: it is a microkernel OS providing strict domain
separation with IPC as the only mechanism available for domains to communicate.

While SK provides a good basis for a secure solution, it is not sufficient in many
practical cases where complex components with different trust levels communicate
and enforcement of diverse security properties is required.

Additional means need to be implemented above the separation kernel architecture to
specify and enforce higher level security policies. Any OS provides its own means to
express security properties; the problem is that they are typically fixed and therefore
such an approach is limited.

The more complex the solution, the more demand there is to express and enforce
diverse security properties. It is virtually impossible to achieve this within a fixed
security model.

It becomes especially important when an untrusted third party is involved in solution
development or open source components are used, and it can increase the possibility
of vulnerabilities discovery. If one could express the security properties, it would be
possible to constrain such components and make the solution more secure.

That is why there should be a flexible way to specify and enforce higher level security
policy that is:

• Reusable: applicable to a wide range of applications.
• Composable: compose system-wide security configuration from smaller

independent policies.
• Higher level: declarative, expressible in business-domain terms rather than

OS-specific notions.
• Extendable: provide means to add new types of policies.

Architecture
KSS logically comprises two components: KSS Runtime (Security Runtime) and Security
Server, where Security Server operates solely over abstract security domains, while
KSS Runtime acts as a glue layer between business logic (applications) and security
logic (security policies).

KSS can be integrated into the existing
environment to intercept sensitive
operations, validate the correctness of
message structures and implement an
access control policy that can allow or block
operations.

The main KSS objective is to provide a tool
to support higher level security policies
in a flexible way. In particular it means the
following:
• Flexible and extendable access control

mechanism.
• A set of security policy implementations.
• SDK to add new policy implementations.

Kaspersky Security System
Technical Data

Po
lic

y
in

te
rf

ac
es

*

KSS Runtime:
• keeps a binding between system interactions and security rules;
• requests Security Server to compute those polices;
• combines the results of computations into access decisions.

Security Server:
• provides implementations of all policies;
• manages security contexts;
• serves requests from Security Runtime.

Security as a Separable Concern
With an approach that treats security as a separable concern, we get the following
advantages:

For business applications:
• no need for applications to implement security policies;
• no need to change applications if a security policy changes;
• security policies are not limited to the tools supported by applications.

For security policies:
• policies are abstracted away from applications;

• policies operate over abstract domains;
• policies are not aware of differences between applications, resources, etc;

• policy can remain stable even if applications change significantly;
• system-wide security policy is a composition of smaller policies.

But in order to achieve flexibility more features are required. In particular, KSS relies on
‘typed communications’.

Typed Communications
Some security policies require knowledge of message structure. For such policies, just
knowing an interaction occurs is insufficient.

For example, a service may provide an interface to set/get parameters for a
technological process. And there is a safety policy that enforces a parameter
(e.g. desired temperature) that cannot be set outside a predefined range and/or it may
depend on previously observed values.

For a reference monitor a message is just a vector of bytes. It knows nothing about the
meaning of those bytes per se.

To provide knowledge about the message structure (and meaning) to KSS, the following
approach is adopted: applications must declare their interfaces, and KSS SDK provides
Interface Definition Language (IDL) to define interfaces and data structures. Every
entity (business application, device driver, etc.) must statically declare all interfaces
it provides as a service.

KSS is designed around a concept of
security as a separable concern. This
concept assumes the security enforcement
mechanism is separated from business logic.
It is a crucial part of achieving flexibility.

package filesys

typedef sequence<Char, 255> Path;
typedef sequence<UInt8, 4096> Buffer;
typedef SInt32 Result;

interface IFileSystem {
open(in Path name, in UInt32 mode, out Handle fd);

read(in Handle fd, in UInt32 pos, in UInt32 len,
out Buffer buf, out Result retcode);

write(in Handle fd, in UInt32 pos, out UInt32 len,
in Buffer buf, out Result retcode);

}

Every time KSS is given a message to
control, it can use its type information
to apply a policy. But prior to any policy
invocation, KSS checks the message format
and ensures that this message is well
formed according to the declared interface.
This kind of check ensures that applications
exchange messages in the correct format.
It illuminates the source of many dangerous
attacks with intentionally invalid data
requests.

Policy Specification Language
Interfaces are collections of methods that comprise in and out arguments. This
definition implies that every method describes two separate messages: request
(in-message) and response (out-message). So every synchronous (request/reply)
interaction is turned into a method call.

KSS has the ability to bind a particular policy to every interaction in the system, using
the knowledge about what method call this message represents. To specify such
bindings, KSS provides Security Configuration Language (CFG). The key feature of this
language is the ability to compose different security policies in a higher level way.

Line 01 declares that there is an entity named Application in the system. The
configuration compiler uses this information to get information about all the interfaces
Application implements. Note that there may be more than one instance of the same
entity Application.

Lines 03-05 specify the first binding rule. It says: whenever an entity (with SID src)
executes Application (SID dst), apply security policy rbac.inheritRole (src, dst). This
policy assigns src’s role to a newly created instance of Application with the identifier
dst. Note that binding rules have two predefined SIDs: initiator (or source) src, and
recipient (or destination) dst.

Lines 07-09 specify another binding rule. In this case, it says: whenever an entity (src)
requests (or calls) from Application (dst) method getStatus of interface IStatus, apply
policy rbac.checkPermissions.

Line 08 contains a policy call with static configuration [“GetStats”]. This is just a JSON
array of permissions required to get access to the method. Line 08 also states that
the policy argument is src. It means that rbac.checkPermissions must take the role
associated with src and ensure that this role has permission [“GetStats”].

Example: WebService
A web service (WebService) application has access to a system configuration
database (Storage) to get its initial configuration. It also has access to a network
subsystem (Network) to serve requests from remote clients.

It is assumed that Storage may contain sensitive data. However, Network is considered
an untrusted component.

• Storage – is a configuration database with sensitive data; it is considered a trusted
component.

• Network – is a communication component to interact with the public network; it is
considered an untrusted component.

• WebService – is an application that needs access to Storage to get startup
configuration and access to Network to do its job.

WebService is considered a trusted component until it sends the first request to
Network (thus it can have access to Storage at the beginning). As soon as WebService
interacts with Network it is no longer trusted.

This simple security property can be formalized in the following way: the system can
be in two different states: initial (or Trusted) and Untrusted. As soon as WebService
gets data from Network, there can only be one transition – from a Trusted state to
Untrusted.

01 entity Application;
02
03 execute dst = Application {
04 rbac.inheritRole (src, dst);
05 }
06
07 request dst = Application, message = IStatus.getStats {
08 rbac.checkPermissions [“GetStats”] (src);
09 }

A security context is associated with
every subject (and object) and serves two
purposes:
• It uniquely identifies the security domain.
• It keeps the state that is needed by

stateful policies to calculate decisions.

When a policy is analyzing communication,
it may use the security contexts of the
communicating parties. A security context
is identified by an integral descriptor called a
security identifier, or SID.

Lines 01-08 introduce a definition of the model as an unlabeled transition system using
the flow policy family. The model is referenced below with name example_model. Flow
is one of the policies provided with KSS SDK.

Line 02 specifies the set of states (two of them).

Line 03 specifies the initial state (trusted).

Lines 04-07 specify permitted transitions within the system. It shows that there is no
transition back to a trusted state.

Line 10 specifies a binding rule. As soon as WebService is executed, it sets the model to
its initial state (because WebService is supposed to be trusted upon execution).

Lines 12-14 specify a request binding rule. Upon any request from WebService to
Storage, it applies the policy example_model.allow, which checks that the system is in
a trusted state; otherwise, it prohibits access.

Lines 16-19 specify another request binding rule. Upon any request from WebService
to Network, it applies the policy example_model.enter, which switches the model to
the untrusted state.

Summary
KSS is a security verdict engine that allows you to model a system as a set of security
domains, describe interactions between these domains and associate rules (or policies)
with the interactions. KSS SDK contains a rich set of policies that can be immediately
implemented in the customer’s solutions: type enforcement, role-based access control,
temporal logic dialects, object capabilities, etc. If the provided set of security policies is
not enough, new custom security models can be easily introduced with KSS SDK.

01 use family example_model = flow {
02 states: [trusted, untrusted],
03 initial: trusted,
04 transitions: {
05 trusted: [untrusted],
06 untrusted: [untrusted]
07 }
08 };
09
10 execute dst=WebService { example_model.restart; }
11
12 request src=WebService, dst=Storage {
13 example_model.allow [“trusted”];
14 }
15
16 request src=WebService,
17 dst=Network {
18 example_model.enter “untrusted”;
19 }

At the beginning WebService has a trusted
state.
As soon as it accesses Network for the first
time it becomes untrusted.
There is no way to become trusted again.

KSS is capable of specifying extremely
complex security properties to meet
real-life requirements.

Read more on
os.kaspersky.com

www.kaspersky.com

© 2020 AO Kaspersky Lab. All rights reserved. Registered trademarks and service marks are the property
of their respective owners.

